Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
1.
Front Biosci (Elite Ed) ; 16(1): 2, 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38538522

ABSTRACT

Wheat (Triticum spp and, particularly, T. aestivum L.) is an essential cereal with increased human and animal nutritional demand. Therefore, there is a need to enhance wheat yield and genetic gain using modern breeding technologies alongside proven methods to achieve the necessary increases in productivity. These modern technologies will allow breeders to develop improved wheat cultivars more quickly and efficiently. This review aims to highlight the emerging technological trends used worldwide in wheat breeding, with a focus on enhancing wheat yield. The key technologies for introducing variation (hybridization among the species, synthetic wheat, and hybridization; genetically modified wheat; transgenic and gene-edited), inbreeding (double haploid (DH) and speed breeding (SB)), selection and evaluation (marker-assisted selection (MAS), genomic selection (GS), and machine learning (ML)) and hybrid wheat are discussed to highlight the current opportunities in wheat breeding and for the development of future wheat cultivars.


Subject(s)
Plant Breeding , Triticum , Humans , Triticum/genetics , Plant Breeding/methods , Hybridization, Genetic
2.
Int J Mol Sci ; 24(10)2023 May 19.
Article in English | MEDLINE | ID: mdl-37240333

ABSTRACT

Due to the advances in DNA markers, kompetitive allele-specific PCR (KASP) markers could accelerate breeding programs and genetically improve drought tolerance. Two previously reported KASP markers, TaDreb-B1 and 1-FEH w3, were investigated in this study for the marker-assisted selection (MAS) of drought tolerance. Two highly diverse spring and winter wheat populations were genotyped using these two KASP markers. The same populations were evaluated for drought tolerance at seedling (drought stress) and reproductive (normal and drought stress) growth stages. The single-marker analysis revealed a high significant association between the target allele of 1-FEH w3 and drought susceptibility in the spring population, while the marker-trait association was not significant in the winter population. The TaDreb-B1 marker did not have any highly significant association with seedling traits, except the sum of leaf wilting in the spring population. For field experiments, SMA revealed very few negative and significant associations between the target allele of the two markers and yield traits under both conditions. The results of this study revealed that the use of TaDreb-B1 provided better consistency in improving drought tolerance than 1-FEH w3.


Subject(s)
Drought Resistance , Triticum , Triticum/genetics , Alleles , Plant Breeding , Phenotype , Polymerase Chain Reaction/methods
4.
Genes (Basel) ; 14(2)2023 01 31.
Article in English | MEDLINE | ID: mdl-36833301

ABSTRACT

Drought stress is a major yield-limiting factor throughout the world in wheat (Triticum aestivum L.), causing losses of up to 80% of the total yield. The identification of factors affecting drought stress tolerance in the seedling stage is especially important to increase adaptation and accelerate the grain yield potential. In the current study, 41 spring wheat genotypes were tested for their tolerance to drought at the germination stage under two different polyethylene glycol concentrations (PEG) of 25% and 30%. For this purpose, twenty seedlings from each genotype were evaluated in triplicate with a randomized complete block design (RCBD) in a controlled growth chamber. The following nine parameters were recorded: germination pace (GP), germination percentage (G%), number of roots (NR), shoot length (SL), root length (RL), shoot-root length ratio (SRR), fresh biomass weight (FBW), dry biomass weight (DBW), and water content (WC). An analysis of variance (ANOVA) revealed highly significant differences (p < 0.01) among the genotypes, treatments (PEG25%, PEG30%) and genotypes × treatment interaction, for all traits. The broad-sense heritability (H2) estimates were very high in both concentrations. They ranged from 89.4 to 98.9% under PEG25% and from 70.8 to 98.7% under PEG30%. Citr15314 (Afghanistan) was among the best performing genotypes under both concentrations for most of the germination traits. Two KASP markers for TaDreb-B1 and Fehw3 genes were used to screen all genotypes and to study the effect of these on drought tolerance at the germination stage. All genotypes with Fehw3 (only) showed a better performance for most traits under both concentrations compared to other genotypes having TaDreb-B1 or having both genes. To our knowledge, this work is the first report showing the effect of the two genes on germination traits under severe drought stress conditions.


Subject(s)
Germination , Triticum , Droughts , Genotype , Seedlings/genetics , Triticum/genetics
5.
Plants (Basel) ; 11(22)2022 Nov 13.
Article in English | MEDLINE | ID: mdl-36432800

ABSTRACT

Barley (Hordeum vulgare L.) thrives in the arid and semi-arid regions of the world; nevertheless, it suffers large grain yield losses due to drought stress. A panel of 426 lines of barley was evaluated in Egypt under deficit (DI) and full irrigation (FI) during the 2019 and 2020 growing seasons. Observations were recorded on the number of days to flowering (NDF), total chlorophyll content (CH), canopy temperature (CAN), grain filling duration (GFD), plant height (PH), and grain yield (Yield) under DI and FI. The lines were genotyped using the 9K Infinium iSelect single nucleotide polymorphisms (SNP) genotyping platform, which resulted in 6913 high-quality SNPs. In conjunction with the SNP markers, the phenotypic data were subjected to a genome-wide association scan (GWAS) using Bayesian-information and Linkage-disequilibrium Iteratively Nested Keyway (BLINK). The GWAS results indicated that 36 SNPs were significantly associated with the studied traits under DI and FI. Furthermore, eight markers were significant and common across DI and FI water regimes, while 14 markers were uniquely associated with the studied traits under DI. Under DI and FI, three (11_10326, 11_20042, and 11_20170) and five (11_20099, 11_10326, 11_20840, 12_30298, and 11_20605) markers, respectively, had pleiotropic effect on at least two traits. Among the significant markers, 24 were annotated to known barley genes. Most of these genes were involved in plant responses to environmental stimuli such as drought. Overall, nine of the significant markers were previously reported, and 27 markers might be considered novel. Several markers identified in this study could enable the prediction of barley accessions with optimal agronomic performance under DI and FI.

6.
Genes (Basel) ; 13(6)2022 06 16.
Article in English | MEDLINE | ID: mdl-35741837

ABSTRACT

Loose smut (LS) disease is a serious problem that affects barley yield. Breeding of resistant cultivars and identifying new genes controlling LS has received very little attention. Therefore, it is important to understand the genetic basis of LS control in order to genetically improve LS resistance. To address this challenge, a set of 57 highly diverse barley genotypes were inoculated with Egyptian loose smut race(s) and the infected seeds/plants were evaluated in two growing seasons. Loose smut resistance (%) was scored on each genotype. High genetic variation was found among all tested genotypes indicating considerable differences in LS resistance that can be used for breeding. The broad-sense heritability (H2) of LS (0.95) was found. Moreover, genotyping-by-sequencing (GBS) was performed on all genotypes and generated in 16,966 SNP markers which were used for genetic association analysis using single-marker analysis. The analysis identified 27 significant SNPs distributed across all seven chromosomes that were associated with LS resistance. One SNP (S6_17854595) was located within the HORVU6Hr1G010050 gene model that encodes a protein kinase domain-containing protein (similar to the Un8 LS resistance gene, which contains two kinase domains). A TaqMan marker (0751D06 F6/R6) for the Un8 gene was tested in the diverse collection. The results indicated that none of the Egyptian genotypes had the Un8 gene. The result of this study provided new information on the genetic control of LS resistance. Moreover, good resistance genotypes were identified and can be used for breeding cultivars with improved resistance to Egyptian LS.


Subject(s)
Hordeum , Biomarkers , Egypt , Hordeum/genetics , Plant Breeding/methods , Polymorphism, Single Nucleotide , Seasons
7.
Genomics ; 114(3): 110358, 2022 05.
Article in English | MEDLINE | ID: mdl-35398246

ABSTRACT

To date, very little research on drought tolerance has been conducted at the seedling stage in winter wheat. In this study, two types of traits, namely tolerance and recovery traits, associated with drought tolerance were scored in biparental mapping population (BPP) and association mapping population (A-set). The results of this study revealed no or weak significant correlation between the two types of traits. Based on GWAS and QTL mapping analyses, all QTLs associated with recovery traits were completely different from those associated with tolerance traits except one QTL in each population that was found to be associated with one tolerance trait and one recovery trait. The analysis of SNP and gene networks confirmed the results of combined GWAS and QTL mapping. One SNP marker located on the 2B chromosome (S2B_26494801) was found to be associated with recovery traits in both populations. The results of this study provided new information on understanding and improving drought tolerance in winter wheat.


Subject(s)
Seedlings , Triticum , Seedlings/genetics , Triticum/genetics , Drought Resistance , Genome-Wide Association Study , Droughts , Phenotype
8.
Plants (Basel) ; 12(1)2022 Dec 20.
Article in English | MEDLINE | ID: mdl-36616131

ABSTRACT

Common bunt (caused by Tilletia caries and T. Foetida) is a major wheat disease. It occurs frequently in the USA and Turkey and damages grain yield and quality. Seed treatment with fungicides is an effective method to control this disease. However, using fungicides in organic and low-income fields is forbidden, and planting resistant cultivars are preferred. Due to the highly effective use of fungicides, little effort has been put into breeding resistant genotypes. In addition, the genetic diversity for this trait is low in modern wheat germplasm. Synthetic wheat genotypes were reported as an effective source to increase the diversity in wheat germplasm. Therefore, a set of 25 synthetics that are resistant to the Turkish common bunt race were evaluated against the Nebraska common bunt race. Four genotypes were found to be very resistant to Nebraska's common bunt race. Using differential lines, four isolines carrying genes, Bt10, Bt11, Bt12, and Btp, were found to provide resistance against both Turkish and Nebraska common bunt races. Genotypes carrying any or all of these four genes could be used as a source of resistance in both countries. No correlation was found between common bunt resistance and some agronomic traits, which suggests that common bunt resistance is an independent trait.

10.
Front Genet ; 12: 749675, 2021.
Article in English | MEDLINE | ID: mdl-34659366

ABSTRACT

Stem rust caused by Puccinia graminis f. sp. tritici Eriks. is an important disease of common wheat globally. The production and cultivation of genetically resistant cultivars are one of the most successful and environmentally friendly ways to protect wheat against fungal pathogens. Seedling screening and genome-wide association study (GWAS) were used to determine the genetic diversity of wheat genotypes obtained on stem rust resistance loci. At the seedling stage, the reaction of the common stem rust race QFCSC in Nebraska was measured in a set of 212 genotypes from F3:6 lines. The results indicated that 184 genotypes (86.8%) had different degrees of resistance to this common race. While 28 genotypes (13.2%) were susceptible to stem rust. A set of 11,911 single-nucleotide polymorphism (SNP) markers was used to perform GWAS which detected 84 significant marker-trait associations (MTAs) with SNPs located on chromosomes 1B, 2A, 2B, 7B and an unknown chromosome. Promising high linkage disequilibrium (LD) genomic regions were found in all chromosomes except 2B which suggested they include candidate genes controlling stem rust resistance. Highly significant LD was found among these 59 significant SNPs on chromosome 2A and 12 significant SNPs with an unknown chromosomal position. The LD analysis between SNPs located on 2A and Sr38 gene reveal high significant LD genomic regions which was previously reported. To select the most promising stem rust resistant genotypes, a new approach was suggested based on four criteria including, phenotypic selection, number of resistant allele(s), the genetic distance among the selected parents, and number of the different resistant allele(s) in the candidate crosses. As a result, 23 genotypes were considered as the most suitable parents for crossing to produce highly resistant stem rust genotypes against the QFCSC.

11.
BMC Genomics ; 22(1): 2, 2021 Jan 02.
Article in English | MEDLINE | ID: mdl-33388036

ABSTRACT

BACKGROUND: Improving grain yield in cereals especially in wheat is a main objective for plant breeders. One of the main constrains for improving this trait is the G × E interaction (GEI) which affects the performance of wheat genotypes in different environments. Selecting high yielding genotypes that can be used for a target set of environments is needed. Phenotypic selection can be misleading due to the environmental conditions. Incorporating information from phenotypic and genomic analyses can be useful in selecting the higher yielding genotypes for a group of environments. RESULTS: A set of 270 F3:6 wheat genotypes in the Nebraska winter wheat breeding program was tested for grain yield in nine environments. High genetic variation for grain yield was found among the genotypes. G × E interaction was also highly significant. The highest yielding genotype differed in each environment. The correlation for grain yield among the nine environments was low (0 to 0.43). Genome-wide association study revealed 70 marker traits association (MTAs) associated with increased grain yield. The analysis of linkage disequilibrium revealed 16 genomic regions with a highly significant linkage disequilibrium (LD). The candidate parents' genotypes for improving grain yield in a group of environments were selected based on three criteria; number of alleles associated with increased grain yield in each selected genotype, genetic distance among the selected genotypes, and number of different alleles between each two selected parents. CONCLUSION: Although G × E interaction was present, the advances in DNA technology provided very useful tools and analyzes. Such features helped to genetically select the highest yielding genotypes that can be used to cross grain production in a group of environments.


Subject(s)
Genome-Wide Association Study , Triticum , Edible Grain/genetics , Gene-Environment Interaction , Genotype , Nebraska , Phenotype , Plant Breeding , Triticum/genetics
12.
Plant Genome ; 13(3): e20032, 2020 11.
Article in English | MEDLINE | ID: mdl-33217215

ABSTRACT

Classical plant breeding has been instrumental in changing the genetic makeup of crop plants for better ecological adaptation and improved quality. This paper provides insights of the genomic changes effected in hard winter wheat (Triticum aestivum L.) through decades of breeding and selection in the Great Plains of the United States. Population structure and differentiation analyses were conducted on 185 wheat cultivars released from 1943 to 2013. Cultivars were grouped into four distinct clusters using discriminant analysis of principal components (DAPC). One of the clusters was unique in that 15 out of the 18 individuals were recent releases (2000-2010), while 12 of the 18 shared the cultivar 'Jagger' in their genetic background. Jagger carries a 2NS/2AS translocation segment from Aegilops ventricosa, an important segment for resistance to several foliar diseases. Using the outlier approach, Wright's population fixation index (Fst) identified 450 loci that were directionally selected. The largest signature of selection was found on chromosome 2A. Genetic diversity was high while the inbreeding coefficient was low, indicating extensive hybridization and germplasm exchange among breeding programs within the region. Foliar disease pressure and selection for resistance helped shape the microevolution of wheat in the southern Great Plains. The results showed that high genetic diversity remains in hard winter wheat cultivars adapted to the Great Plains of the USA, and modern plant breeding did not cause any sizable reduction in genetic diversity of the crop in this region.


Subject(s)
Plant Breeding , Triticum , Breeding , Inbreeding , Seasons , Triticum/genetics , United States
13.
Plants (Basel) ; 9(11)2020 Oct 24.
Article in English | MEDLINE | ID: mdl-33114292

ABSTRACT

Drought induces several challenges for plant development, growth, and production. These challenges become more severe, in particular, in arid and semiarid countries like Egypt. In terms of production, barley ranks fourth after wheat, maize, and rice. Seed germination and seedling stages are critical stages for plant establishment and growth. In the current study, 60 diverse barley genotypes were tested for drought tolerance using two different treatments: control (0-PEG) and drought (20%-PEG). Twenty-two traits were estimated for seed germination and seedling parameters. All traits were reduced under drought stress, and a significant variation was found among genotypes under control and stress conditions. The broad-sense heritability estimates were very high under both control and drought for all traits. It ranged from 0.63 to 0.97 under the control condition and from 0.89 to 0.97 under drought, respectively. These high heritabilities suggested that genetic improvement of drought tolerance in barley at both stages is feasible. The principal component analysis revealed that root-related parameters account for the largest portion of phenotypic variation in this collection. The single-marker analysis (SMA) resulted in 71 quantitative trait loci (QTLs) distributed across the seven chromosomes of barley. Thirty-three QTLs were detected for root-length-related traits. Many hotspots of QTLs were detected for various traits. Interestingly, some markers controlled many traits in a pleiotropic manner; thus, they can be used to control multiple traits at a time. Some QTLs were constitutive, i.e., they are mapped under control and drought, and targeting these QTLs makes the selection for drought tolerance a single-step process. The results of gene annotation analysis revealed very potential candidate genes that can be targeted to select for drought tolerance.

14.
Genes (Basel) ; 11(8)2020 07 23.
Article in English | MEDLINE | ID: mdl-32717821

ABSTRACT

Bran friability (particle size distribution after milling) and water retention capacity (WRC) impact wheat bran functionality in whole grain milling and baking applications. The goal of this study was to identify genomic regions and underlying genes that may be responsible for these traits. The Hard Winter Wheat Association Mapping Panel, which comprised 299 lines from breeding programs in the Great Plains region of the US, was used in a genome-wide association study. Bran friability ranged from 34.5% to 65.9% (median, 51.1%) and WRC ranged from 159% to 458% (median, 331%). Two single-nucleotide polymorphisms (SNPs) on chromosome 5D were significantly associated with bran friability, accounting for 11-12% of the phenotypic variation. One of these SNPs was located within the Puroindoline-b gene, which is known for influencing endosperm texture. Two SNPs on chromosome 4A were tentatively associated with WRC, accounting for 4.6% and 4.4% of phenotypic variation. The favorable alleles at the SNP sites were present in only 15% (friability) and 34% (WRC) of lines, indicating a need to develop new germplasm for these whole-grain end-use quality traits. Validation of these findings in independent populations will be useful for breeding winter wheat cultivars with improved functionality for whole grain food applications.


Subject(s)
Edible Grain/physiology , Plant Proteins/genetics , Plant Proteins/metabolism , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Triticum/physiology , Water/metabolism , Edible Grain/anatomy & histology , Edible Grain/genetics , Phenotype , Plant Breeding , Triticum/anatomy & histology , Triticum/genetics
15.
BMC Genomics ; 21(1): 434, 2020 Jun 26.
Article in English | MEDLINE | ID: mdl-32586286

ABSTRACT

BACKGROUND: Wheat (Triticum aestivium L.) is an important crop globally which has a complex genome. To identify the parents with useful agronomic characteristics that could be used in the various breeding programs, it is very important to understand the genetic diversity among global wheat genotypes. Also, understanding the genetic diversity is useful in breeding studies such as marker-assisted selection (MAS), genome-wide association studies (GWAS), and genomic selection. RESULTS: To understand the genetic diversity in wheat, a set of 103 spring wheat genotypes which represented five different continents were used. These genotypes were genotyped using 36,720 genotyping-by-sequencing derived SNPs (GBS-SNPs) which were well distributed across wheat chromosomes. The tested 103-wheat genotypes contained three different subpopulations based on population structure, principle coordinate, and kinship analyses. A significant variation was found within and among the subpopulations based on the AMOVA. Subpopulation 1 was found to be the more diverse subpopulation based on the different allelic patterns (Na, Ne, I, h, and uh). No high linkage disequilibrium was found between the 36,720 SNPs. However, based on the genomic level, D genome was found to have the highest LD compared with the two other genomes A and B. The ratio between the number of significant LD/number of non-significant LD suggested that chromosomes 2D, 5A, and 7B are the highest LD chromosomes in their genomes with a value of 0.08, 0.07, and 0.05, respectively. Based on the LD decay, the D genome was found to be the lowest genome with the highest number of haplotype blocks on chromosome 2D. CONCLUSION: The recent study concluded that the 103-spring wheat genotypes and their GBS-SNP markers are very appropriate for GWAS studies and QTL-mapping. The core collection comprises three different subpopulations. Genotypes in subpopulation 1 are the most diverse genotypes and could be used in future breeding programs if they have desired traits. The distribution of LD hotspots across the genome was investigated which provides useful information on the genomic regions that includes interesting genes.


Subject(s)
Linkage Disequilibrium , Polymorphism, Single Nucleotide , Triticum/genetics , Chromosome Mapping/methods , Genetics, Population , Genome-Wide Association Study , Genotype , Plant Breeding , Quantitative Trait Loci , Selection, Genetic , Sequence Analysis, DNA
16.
Front Plant Sci ; 11: 585927, 2020.
Article in English | MEDLINE | ID: mdl-33469459

ABSTRACT

One option to achieving greater resiliency for barley production in the face of climate change is to explore the potential of winter and facultative growth habits: for both types, low temperature tolerance (LTT) and vernalization sensitivity are key traits. Sensitivity to short-day photoperiod is a desirable attribute for facultative types. In order to broaden our understanding of the genetics of these phenotypes, we mapped quantitative trait loci (QTLs) and identified candidate genes using a genome-wide association studies (GWAS) panel composed of 882 barley accessions that was genotyped with the Illumina 9K single-nucleotide polymorphism (SNP) chip. Fifteen loci including 5 known and 10 novel QTL/genes were identified for LTT-assessed as winter survival in 10 field tests and mapped using a GWAS meta-analysis. FR-H1, FR-H2, and FR-H3 were major drivers of LTT, and candidate genes were identified for FR-H3. The principal determinants of vernalization sensitivity were VRN-H1, VRN-H2, and PPD-H1. VRN-H2 deletions conferred insensitive or intermediate sensitivity to vernalization. A subset of accessions with maximum LTT were identified as a resource for allele mining and further characterization. Facultative types comprised a small portion of the GWAS panel but may be useful for developing germplasm with this growth habit.

17.
Sci Rep ; 9(1): 20173, 2019 12 27.
Article in English | MEDLINE | ID: mdl-31882883

ABSTRACT

Hybrid wheat (Triticum spp.) has the potential to boost yields and enhance production under changing climates to feed the growing global population. Production of hybrid wheat seed relies on male sterility, the blocking of pollen production, to prevent self-pollination. One method of preventing self-pollination in the female plants is to apply a chemical hybridizing agent (CHA). However, some combinations of CHA and genotypes have lower levels of sterility, resulting in decreased hybrid purity. Differences in CHA efficacy are a challenge in producing hybrid wheat lines for commercial and experimental use. Our primary research questions were to estimate the levels of sterility for wheat genotypes treated with a CHA and determine the best way to analyze differences. We applied the CHA sintofen (1-(4-chlorphyl)-1,4-dihydro-5-(2-methoxyethoxy)-4-oxocinnoline-3-carboxylic acid; Croisor 100) to 27 genotypes in replicate. After spraying, we counted seed in bagged female heads to evaluate CHA efficacy and CHA-by-genotype interaction. Using logit and probit models with a threshold of 7 seeds, we found differences among genotypes in 2015. Sterility was higher in 2016 and fewer genotypic differences were found. When CHA-induced sterilization is less uniform as in 2015, zero-inflated and hurdle count models were superior to standard mixed models. These models calculate mean seed number and fit data with limit-bounded scales collected by agronomists and plant breeders to compare genotypic differences. These analyses can assist in selecting parents and identifying where additional optimization of CHA application needs to occur. There is little work in the literature examining the relationship between CHAs and genotypes, making this work fundamental to the future of hybrid wheat breeding.


Subject(s)
Hybrid Vigor/genetics , Hybridization, Genetic , Triticum/genetics , Algorithms , Genotype , Models, Genetic , Models, Statistical , Plant Breeding , Pollen , Seeds/genetics
18.
G3 (Bethesda) ; 9(12): 4209-4222, 2019 12 03.
Article in English | MEDLINE | ID: mdl-31645419

ABSTRACT

Exploiting genetically diverse lines to identify genes for improving crop performance is needed to ensure global food security. A genome-wide association study (GWAS) was conducted using 46,268 SNP markers on a diverse panel of 143 hexaploid bread and synthetic wheat to identify potential genes/genomic regions controlling agronomic performance (yield and 26 yield-related traits), disease resistance, and grain quality traits. From phenotypic evaluation, we found large genetic variation among the 35 traits and recommended five lines having a high yield, better quality, and multiple disease resistance for direct use in a breeding program. From a GWAS, we identified a total of 243 significant marker-trait associations (MTAs) for 35 traits that explained up to 25% of the phenotypic variance. Of these, 120 MTAs have not been reported in the literature and are potentially novel MTAs. In silico gene annotation analysis identified 116 MTAs within genes and of which, 21 MTAs were annotated as a missense variant. Furthermore, we were able to identify 23 co-located multi-trait MTAs that were also phenotypically correlated to each other, showing the possibility of simultaneous improvement of these traits. Additionally, most of the co-located MTAs were within genes. We have provided genomic fingerprinting for significant markers with favorable and unfavorable alleles in the diverse set of lines for developing elite breeding lines from useful trait-integration. The results from this study provided a further understanding of genetically complex traits and would facilitate the use of diverse wheat accessions for improving multiple traits in an elite wheat breeding program.


Subject(s)
Disease Resistance/genetics , Genes, Plant , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Seeds/genetics , Triticum/genetics , Genome-Wide Association Study , Molecular Sequence Annotation , Siberia
19.
J Appl Genet ; 60(3-4): 283-289, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31414379

ABSTRACT

Recurrent selection and intercrossing between best of the best parents in each generation of breeding cycle resulted in a narrower genetic diversity in elite wheat (Triticum aestivum L.) germplasm. Therefore, we investigated diverse source of 143 synthetic and bread wheat accessions for identifying potentially rich genetic resources for improving the genetic diversity in wheat. This study identified 47,526 genotyping-by-sequencing-derived SNP markers that were nearly evenly distributed across three genomes of wheat. The population structure analysis identified three distinct clusters (Japan synthetics, CIMMYT synthetics, and bread wheat) of wheat genotypes on the basis of type and geographical origin of wheat accessions. Population differentiation using analysis of molecular variance indicated 21% of the total genetic variance among subgroups and the remainder within subgroups. This study also identified that the Japan synthetic group was the most divergent group compared with other subgroups. The genetic diversity comparisons between synthetic and bread wheat lines showed that the gene diversity of synthetic wheat was 33% higher than bread wheat accessions, indicating the potential use of these lines for broadening the genetic diversity of modern wheat cultivars. The results from this study will be helpful in further understanding genomic features of wheat and facilitate their use in wheat breeding programs.


Subject(s)
Genetic Variation , Genetics, Population , Triticum/genetics , Bread , Breeding , Chromosome Mapping , Genome, Plant/genetics , Genotype , Humans , Polymorphism, Single Nucleotide/genetics , Siberia , Triticum/growth & development
20.
Sci Rep ; 9(1): 11694, 2019 08 12.
Article in English | MEDLINE | ID: mdl-31406132

ABSTRACT

Stem rust (caused by Puccinia graminis f. sp. tritici) is a major disease of wheat. To understand the genetic basis of stem rust resistance in Nebraska winter wheat, a set of 330 genotypes representing two nurseries (DUP2015 and TRP2015) were evaluated for resistance to a Nebraska stem rust race (QFCSC) in two replications. The TRP2015 nursery was also evaluated for its resistance to an additional 13 stem rust races. The analysis of variance revealed significant variation among genotypes in both populations for stem rust resistance. Nine stem rust genes, Sr6, Sr31, Sr1RSAmigo, Sr24, Sr36, SrTmp, Sr7b, Sr9b, and Sr38, were expected and genotyped using gene-specific markers. The results of genetic analysis confirmed the presence of seven stem rust resistance genes. One genotype (NE15680) contained target alleles for five stem rust resistance genes and had a high level of stem rust resistance against different races. Single marker analysis indicated that Sr24 and Sr38 were highly significantly associated with stem rust resistance in the DUP2015 and TRP2015 nurseries, respectively. Linkage disequilibrium analysis identified the presence of 17 SNPs in high linkage with the Sr38-specific marker. These SNPs potentially tagging the Sr38 gene could be used in marker-assisted selection after validating them in additional genetic backgrounds.


Subject(s)
Basidiomycota/pathogenicity , Disease Resistance/genetics , Plant Diseases/genetics , Polymorphism, Single Nucleotide , Triticum/genetics , Alleles , Basidiomycota/physiology , Chromosome Mapping , Chromosomes, Plant/chemistry , Gene Frequency , Genetic Markers , Genome-Wide Association Study , Genotype , Linkage Disequilibrium , Nebraska , Plant Diseases/immunology , Plant Diseases/microbiology , Plant Stems/genetics , Plant Stems/immunology , Plant Stems/microbiology , Triticum/immunology , Triticum/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...